Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms.

نویسندگان

  • L A de Weger
  • J J van Arendonk
  • K Recourt
  • G A van der Hofstad
  • P J Weisbeek
  • B Lugtenberg
چکیده

Under iron-limited conditions, Pseudomonas putida WCS358 produces a siderophore, pseudobactin 358, which is essential for the plant growth-stimulating ability of this strain. Cells of strain WCS358, provided that they have been grown under Fe3+ limitation, take up 55Fe3+ from the 55Fe3+-labeled pseudobactin 358 complex with Km and Vmax values of 0.23 microM and 0.14 nmol/mg of cell dry weight per min, respectively. Uptake experiments with cells treated with various metabolic inhibitors showed that this Fe3+ uptake process was dependent on the proton motive force. Furthermore, strain WCS358 was shown to be able to take up Fe3+ complexed to the siderophore of another plant-beneficial P. fluorescens strain, WCS374. The tested pathogenic rhizobacteria and rhizofungi were neither able to grow on Fe3+-deficient medium in the presence of pseudobactin 358 nor able to take up 55Fe3+ from 55Fe3+-pseudobactin 358. The same applies for three cyanide-producing Pseudomonas strains which are supposed to be representatives of the minor pathogens. These results indicate that the extraordinary ability of strain WCS358 to compete efficiently for Fe3+ is based on the fact that the pathogenic and deleterious rhizosphere microorganisms, in contrast to strain WCS358 itself, are not able to take up Fe3+ from Fe3+-pseudobactin 358 complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments.

For application of genetically engineered fluorescent Pseudomonas spp., specific markers are required for monitoring of wild-type Pseudomonas strains and their genetically modified derivatives in natural environments. In this study, the specific siderophore receptor PupA of plant growth-promoting Pseudomonas putida WCS358 was used as a marker to monitor wild-type strain WCS358. After introducti...

متن کامل

Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants.

SUMMARY Pseudomonas putida WCS358 is a plant growth-promoting rhizobacterium originally isolated from the rhizosphere of potato. It can suppress soil-borne plant diseases by siderophore-mediated competition for iron, but it has also been reported to result in induced systemic resistance (ISR) in Arabidopsis thaliana. Bacterial determinants of this strain involved in inducing systemic resistance...

متن کامل

Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358.

The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together wit...

متن کامل

Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere.

Pseudomonas spp. have the capacity to utilize siderophores produced by diverse species of bacteria and fungi, and the present study was initiated to determine if siderophores produced by rhizosphere microorganisms enhance the levels of iron available to a strain of Pseudomonas putida in this natural habitat. We used a previously described transcriptional fusion (pvd-inaZ) between an iron-regula...

متن کامل

Control of Fusarium Wilt of Radish by Combining Pseudomonas putida Strains that have Different Disease-Suppressive Mechanisms.

ABSTRACT Biological control of soilborne plant pathogens in the field has given variable results. By combining specific strains of microorganisms, multiple traits antagonizing the pathogen can be combined and this may result in a higher level of protection. Pseudomonas putida WCS358 suppresses Fusarium wilt of radish by effectively competing for iron through the production of its pseudobactin s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 170 10  شماره 

صفحات  -

تاریخ انتشار 1988